
© Proligence, Inc. www.proligence.com

OPS Database Configuration

Author: Arup Nanda
Initial Creation: 11/8/01 Last Revision: 1/30/02

Version: 2

Contents

General Configuration ...1
Naming Convention of Oracle DB Related Files...1
Tablespaces...2
Archive Logs ..5
Parallel Query...5
Initial Load of Objects into Shared Pool...5
Index Tuning Instructions...5
Default Degree of Parallelism of Tables ..5
STATSPACK ..6
Transaction Pattern Analysis..6
Maintenance Recommendations ..7
Appendix A Index Tuning Techniques...8

General Configuration

The database is a two-node Oracle Parallel Server (OPS) 8.1.7.1 on a cluster of two Sun Ultra-80
platforms running Solaris 8. The datafiles are based on unix raw slices created on an EMC disk
array with about 1 TB capacity. Although partitioning option is installed, it is not to be used. The
nodes are named prodsvr1 and prodsvr2.

Important : Although this a two node cluster, only the prodsvr1 node is to be used. The other,
prodsvr2 is to be used for failover from prodsvr1. This failover is effected by the specially
constructed tnsnames.ora at the client machines.

The database name is PRODB. The oracle related files are stored in Oracle Flexible Architecture
format with the base as /u01/oracle on each machine. The initPRODB.ora contains all
initialization parameters common to both instances. It resides on
/u01/oracle/admin/PRODB/pfile and it is not shared; but the files are identical in
both servers. When a change is made in one, it must be copied to the other server. The instance
specific parameters are in
/u01/oracle/admin/InstanceNum/pfile/initInstanceNum.ora where
InstanceNum is either PRODB1 (for prodsvr1) or PRODB2 (for prodsvr2).

Naming Convention of Oracle DB Related Files

© Proligence, Inc. www.proligence.com

OurCustomer DB Configuration Page 2 of 11

Datafiles: There are several raw slices named in the format dataNNN, where NNN represents a
zero padded number starting with 1, e.g. data001 to data450. Each datafile is exactly 2 GB
in size. Please note that not all such raw slices are used now; they are reserved to be used when
needed.

Redo Log Files: There are two sets of redo logs for the two instances of OPS. Each set has 4
groups and each group has 2 members of 100 MB. The names are in the format
redo_PRODBInstanceNum_gGroupNum_mMemberNum, where InstanceNum is
either 1 or 2 for PRODB1 or PRODB2 instances of OPS; GroupNum is between 1 to 8 and
MemberNum is either 1 or 2. For example, redo_PRODB1_g1_m1 indicates that it is used
by instance PRODB1, belongs to group 1 and it is member 1. So there are a total of 16 redo log
files. Groups 1 to 4 are used in PRODB1 and 5 to 8 are used in PRODB2.

Controlfiles: There are 3 controlfiles named in the format cntl_PRODB_N where N is between
1 and 3. Each raw slice is 300 MB but the actual controlfile in that could be much smaller. The size
increases slowly but steadily.

Tablespaces

These are tablespaces and of these only three are allowed to grow as they contain application
data. The others have been given pre -allocated storage. Each datafile resides in directory
/dev/vx/rdsk/oracledg.

Tablespace Size Datafiles Extent

Management
Comments

SYSTEM 2 GB data001 DICTIONARY
RBS_PRODB1 8 GB data002

data003
data004
data005

LOCAL Contains rollback
segments for instance
PRODB1

RBS_PRODB2 8 GB data006
data007
data008
data009

LOCAL Contains rollback
segments for instance
PRODB2

STATSPACK 2 GB data010 LOCAL Contains the tables for
STATSPACK.

TOOLS 2 GB data011 LOCAL Contains tables for
miscellaneous users like
OUTLN and DRSYS.

TEMP1 6 GB data012
data013
data014

LOCAL
TEMPORARY

Temporary segments for
user MSCH

TEMP2 8 GB data015
data016
data017

LOCAL
TEMPORARY

Temporary segments for
all other users.

© Proligence, Inc. www.proligence.com

OurCustomer DB Configuration Page 3 of 11

Tablespace Size Datafiles Extent
Management

Comments

data018
USER_DATA Variable,

Currently 50
GB

data019 to
data043

LOCAL Application data tables

USER_DATA_2 Variable,
Currently 50
GB

data044 to
data068

LOCAL Application data tables

INDX Variable,
Currently 50
GB

data069 to
data093

LOCAL Application data indexes

MLOG_SMALL 2 GB Fixed data094 LOCAL Snapshot logs of small
tables. Please see the
Replication Setup
Manual for Complete
Details.

MLOG_MED 2 GB Fixed data095 LOCAL Snapshot logs of the
medium sized tables.

MLOG_BIG 2 GB Fixed data096 LOCAL Snapshot logs of the big
tables.

As you can see the fixed size tablespaces have been places at the beginning of the sequences
leaving the rest of the sequenced datafiles to the increasing size tablespaces. All these 2 GB raw
partitions are spliced across the raid array to provide the maximum performance with the limited
controllers available.

Whenever needed, the DBA should allocate the rawslices from the pool of available ones. The pool
of available ones are recorded in a flat text file called rawslice_list.txt under directory
/u01/oracle/admin/PRODB1/adhoc on prodsvr1 only, not on prodsvr2. As seen from
above table, rawslices from data094 to data450, i.e. 356 slices equating to 712 GB is available
right now, well heeled for the future expansion of the database for three years.

Here are the threshold guidelines for various tables. Please note that it’s only a recommendation.

Tablespace Recommended Percent Free space
SYSTEM 30
RBS_PRODB1 30
RBS_PRODB2 30
STATSPACK 20
TOOLS 20
TEMP1 0 (This is tempspace and there is no need to add space to increase

free space)
TEMP2 0
USER_DATA 40

© Proligence, Inc. www.proligence.com

OurCustomer DB Configuration Page 4 of 11

Tablespace Recommended Percent Free space
USER_DATA_2 40
INDX 40
MLOG_SMALL 50
MLOG_MED 50
MLOG_BIG 50

© Proligence, Inc. www.proligence.com

OurCustomer DB Configuration Page 5 of 11

Archive Logs

The archive logs are either stored on /archive1, or /archive2 or /archive3 filesystems on the storage
array common to both the prodsvr1 and 2 machines. The init.ora parameter lists /archive1 as the
archive log destination, but the backup software, DB BREEZE, makes the others the destination by
issuing an ALTER SYSTEM command.

The format of the archive log is PRODB_SequenceNum_ThreadNumber.arc, where
SequenceNum is the archive log sequence number and ThreadNumber is the thread
numbr (instance number).

Parallel Query

Each instance has parallel query servers enabled. The current value is 12 Minimum and 50
Maximum.

Initial Load of Objects into Shared Pool

In order to reduce pinning, a database trigger puts several objects of the owners MSCH and TCOP
into the shared pool by using the procedure DBMS_SHARED_POOL.KEEP().

Index Tuning Instructions

From time to time, some indexes in the database tend to get lopsided, a term used by the author
due to lack of an official one to describe the phenomenon that affects indexes in an OLTP system.
The b*tree indexes have branches and leaves to indicate structure. If the insertion of rows into the
table is in such a pattern that more values starting with a particular character or number are
inserted more frequently than the others. This makes the branching of the index on one side more
prominent than the other, increasing the “height” of the index.

The other situation is period of time, when the rows get deleted from the main table, the index gets
“holes” in the places of deleted rows. These two factors combined produce significant access
problems for the index and the index needs to be rebuilt. The DBA has to make a judgment call
based on the degree of lopsidedness and holes present. The author has provided a complete
system to check the above metrics. It’s described in Appendix.

Default Degree of Parallelism of Tables

The prodsvr1machine has 4 CPUs and it make sense to have a default degree of parallelism for all
big tables as 4; but do not set the default degree. Oracle uses cost based optimizer on queries
even though there are no statistics on the tables or indexes and this created wrong access paths,
sometimes making full table scans.

© Proligence, Inc. www.proligence.com

OurCustomer DB Configuration Page 6 of 11

STATSPACK

The statspack data collections are invaluable tools in determining both the measurement and
scope of the database tuning exercise. The schema is PERFSTAT and it uses the tablespace
STATSPACK (2 GB). The snap() procedure is executed every hour on the hour.

Transaction Pattern Analysis

The statspack tables provided enough data to predict the transaction load on the system. The
following graph provides a picture of the rate of transactions per hour every hour averaged over the
first two months. As you can notice, the period between 17:00 to 19:00 is the quietest.

0

2000

4000

6000

8000

10000

12000

0:0
0

2:0
0

4:0
0

6:0
0

8:0
0

10
:00

12
:00

14
:00

16
:00

18
:00

20
:00

22
:00

Quiet
Period

© Proligence, Inc. www.proligence.com

OurCustomer DB Configuration Page 7 of 11

Maintenance Recommendations

Daily

?? Free space in the tablespaces
?? Alert.log for any errors, general.
?? Between 08:00 to 10:00 in the morning, check for events and waits to see if any significant wait

is happening.
?? Check Hot Backup has completed all right.
?? Make sure all the resources are properly configured as seen from the v$resource_limit view.
?? Make sure parallel query servers are properly defined from the PX statistics for that day.
?? Check the v$waitstat for that day and make sure no significant waits are occurring.
?? Check for parallel server stats for locking conflicts, etc.

Weekly

None

Bi-weekly

Index Check and Rebuilding for the presence of Holes and Lopsidedness as described above.

Monthly

None

© Proligence, Inc. www.proligence.com

OurCustomer DB Configuration Page 8 of 11

Appendix A Index Tuning Techniques

Symptoms of the Problem

1. The buffer busy wait wait event goes up significantly in the session_wait events and the
suspected index segment shows up in the parameters of v$session_wait.

2. The query was working fine but suddenly takes a much longer time to complete and the
execution plan has not changed.

Identifying Index Lopsidedness and/or Presence of Holes

The holes can be identified by the command analyze index … validate structure. However this
command locks the tables in share mode preventing the insert/update/delete activities. So care
must be chosen when to run this. From analysis of the statspack report, it has been identified that
the transaction rate is lowest between 5 and 7 every evening and even lower on Mondays. This
means the command has to be automated to be put in a cron job.

In addition to that, the command itself needs a share lock on the table and if another transaction
has held a lock, the command cannot progress. Thus a repeat try is needed when issuing the
command.

Both the objectives have been achieved by creating a system to validate the index structures. The
system comprises of three tables and a pl/sql procedure to execute the command. Here is a brief
description of the components involved.

© Proligence, Inc. www.proligence.com

OurCustomer DB Configuration Page 9 of 11

INDCHK_INDEXES This is a driver table initially populated from DBA_INDEXES WHERE
OWNER IN (“MSCH’,’TCOP’). Its columns are described below. When a
new index is created, please add it here.

OWNER The owner of the table/index.

TABLE_NAME The name of the table.

INDEX_NAME The name of the index.

ANALYSIS_OPTION This is either “REPEAT” or “SKIP”. When
val_index tries to analyze the index, if there
are locks on the table, or index, the
command will fail. If this field is REPEAT,
then val_index will repeat the command, till
RETRY_LIMIT or until it is successful,
whichever comes first. If this field is SKIP,
then for that index, val_index will skip it
when it can not acquire a share lock.

ANALYZED_STATUS The status after analysis. When you run
val_index for the first time, make it NEW.
When val_index picks up the index to
analyze, it becomes PROCESSED. If the
lock on the table cannot be obtained, it
becomes, FAILED, or if successfully
analyzed, it becomes VALID.

RETRY_LIMIT The maximum number of times val_index
will try to acquire the index lock after an
unsuccessful try.

RETRY_COUNT The current number of retries val_index has
had for that index.

STATUS_CHANGE_DATE The timestamp of the last status change.

INDCHK_INDEX_STATS This stores the index stats after the validate structure command. Please
note that the when ANALYZE INDEX VALIDATE STRUCTURE command is
issued, the table index_stats is visible only on that session and holds the
data for the last analyzed index only. So we need to preserve the rows from
that to some permanent space and this is the table for that. The structure is
exactly same as the INDEX_STATS table.

© Proligence, Inc. www.proligence.com

OurCustomer DB Configuration Page 10 of
11

INDCHK_HISTOGRAM This is similar to INDEX_HISTOGRAM table except that the index name is
added. Due to the same reason described above, the index_histogram is
stored in this table.

The pl/sql component is the program called val_index.sql. This program drives off the
INDCHK_INDEXES table and issues ANALYZE INDEX <index_name> VALIDATE STRUCTURE
for each index on that table with the retry options as indicated. After running this, the
INDCHK_INDEX_STATS and INDCHK_INDEX_HISTOGRAM tables are populated and are ready
for further analysis.

This program val_index.sql should be run as the schema owner that owns the above tables and
through a cron job at around 5 PM on a Monday, if possible, every to weeks. The following queries
give the indication where or not the index needs reorganization.

SELECT INDEX_NAME, ROUND(100*DEL_LF_ROWS/LF_ROWS,0), HEIGHT
FROM INDCHK_INDEX_STATS
WHERE
(DEL_LF_ROWS > 0
AND LF_ROWS > 0
AND DEL_LF_ROWS/LF_ROWS > 0.1)
OR
HEIGHT > 3

This gives the deletion hole percentage. If the second column is more than 10, then the index may
be considered for reorganization, but may be skipped based on the perception of the hole factor on
performance. A value of 20 or above certainly needs reorg.

If the height is more than 3, then it may be a candidate for rebuilding; However the action may be
postponed till the height > 4 when it definitely needs rebuilding.

Rebuilding the Indexes

After identifying an index for rebuilding, the index may be rebuilt by the following command.

ALTER INDEX <index_name> REBUILD ONLINE PARALLEL 4 NOLOGGING;

while connected as the schema owner, MSCH or TCOP. Please note that you do not have to find a
quiet time for this operation; it can be done under full load.

After the rebuild, make sure the hole percentage is reduced and height too, if applicable. This can
be done by the running the following query

UPDATE INDCHK_INDEXES
SET ANALYZED_STATUS = ‘NEW’, RETRY_COUNT = 0
WHERE INDEX_NAME = ‘<index_name>’;
COMMIT:

© Proligence, Inc. www.proligence.com

OurCustomer DB Configuration Page 11 of
11

to make that particular index candidate for val_index script and then running val_index.sql.
However, this needs to done at a quiet time as it locks the underlying table.

