
© Proligence, Inc. www.proligence.com

OurCustomer Database Replication

Arup Nanda
Version: 1.2 Last Revised: 2/4/02

Contents
Typographical Conventions...1
Purpose..1
Intended Audience ...1
Scope ...1
Technical Notes ...5

To Turn Replication ON or OFF at the Master Site for a Table ...5
The Location of the Snapshot Logs ...5
Changing the Refresh Interval..5
Stopping Replication Temporarily at Snapshot Site ...5

Making A Snapshot Full Refresh ...6
Sma ll and Medium Tables ..6
Large Tables...6

Altering Master Tables Used in Replication ..10
Problem..10
Solution Description..10
Step by Step Actions..10

Typographical Conventions

Normal Text Descriptions

Monotype Used for exact phrase as in case of typing commands, etc. Enter them as is or better yet,

copy and paste them in place of commands.

<Angle
Bracketed
Italicized
Monotype>

 A specific word to be replaced by an actual name in the command. For example,
<tablename> should be replaced by the actual name of the name whenever it appears.
Do not add the angle brackets.

Purpose

To describe the components of the replications setup at OurCustomer for the OurCustomer
Database and help diagnose and resolve problems.

Intended Audience

This document is intended for the Database Administrators of the Production Database. A prior
knowledge of basic replication setup is assumed on the part of the reader.

Scope

This document describes the specific setup of the replication environment at OurCustomer. It does
not describe replication setup in general nor is intended to be an oracle replication textbook.

© Proligence, Inc. www.proligence.com

OurCustomer Database Replication Page 2 of 12

Setup

The following describes the replication setup at OurCustomer.

The main database, a Two-Node Oracle Parallel Server resides on prodsvr1 and prodsvr2
machines under database name DBPROD. The replication database is on repsvr3 under name
DBREP. The replication is based on the Single Master Read Only Snapshot model.

For the purpose of simplicity and ease of administration, two snapshot groups called
MG_SMALL_TABLES and MED_TABLES have been formed. They include all the small and
medium tables respectively. Each of the other 20 tables, which are big in size and number of rows,
has been placed under a refresh group bearing the same name as the table. For example table
MYTABLE belongs to the refresh group MYTABLE.

All snapshots are read only type. The large tables have been set to a refresh interval of 5 minutes,
the medium tables 5 minutes and the small tables 5 minutes. They can be easily changed
however.

The following Table describes the Refresh Groups.

Small Tables Refresh Group MG_SMALL_TABLES. They are controlled by a job which kicks off
every 5 minutes. The row counts and sizes are as of 1/17/02.

Owner Table Name Size(MB) Row Count
MSCH <tablename hidden> 0.06 0
MSCH <tablename hidden> 5 0
MSCH <tablename hidden> 40 0
MSCH <tablename hidden> 10 1

© Proligence, Inc. www.proligence.com

OurCustomer Database Replication Page 3 of 12

MSCH <tablename hidden> 30 0
MSCH <tablename hidden> 30 0
MSCH <tablename hidden> 0.06 49
MSCH <tablename hidden> 0.31 0
MSCH <tablename hidden> 1 0
MSCH <tablename hidden> 0.06 1
MSCH <tablename hidden> 10 0
MSCH <tablename hidden> 8 0
MSCH <tablename hidden> 5 0
MSCH <tablename hidden> 5 0
MSCH <tablename hidden> 15 0
MSCH <tablename hidden> 12 0
MSCH <tablename hidden> 1 73
MSCH <tablename hidden> 0.06 11
MSCH <tablename hidden> 0.06 18
MSCH <tablename hidden> 0.06 16
MSCH <tablename hidden> 0.06 6
MSCH <tablename hidden> 10 0
MSCH <tablename hidden> 4 0
MSCH <tablename hidden> 10 0
MSCH <tablename hidden> 4 0
MSCH <tablename hidden> 4 0
MSCH <tablename hidden> 2 0
MSCH <tablename hidden> 6 0
MSCH <tablename hidden> 0.13 52
MSCH <tablename hidden> 0.25 0
MSCH <tablename hidden> 2 105
MSCH <tablename hidden> 1 7
MSCH <tablename hidden> 2 10
MSCH <tablename hidden> 40 0
MSCH <tablename hidden> 4 0
MSCH <tablename hidden> 2 0
MSCH <tablename hidden> 2 0

Medium Sized Tables Refresh Group MED_TABLES. They are controlled by a job which kicks off
every 5 minutes. The row counts and sizes are as of 1/17/02.

Owner Table Name Size(MB) Row Count
MSCH <tablename hidden> 1 336
MSCH <tablename hidden> 1 335
MSCH <tablename hidden> 2 668
MSCH <tablename hidden> 25 638
MSCH <tablename hidden> 15 648
MSCH <tablename hidden> 4 658

© Proligence, Inc. www.proligence.com

OurCustomer Database Replication Page 4 of 12

MSCH <tablename hidden> 4 866
RSCH <tablename hidden> 0.06 3
RSCH <tablename hidden> 0.06 1
RSCH <tablename hidden> 0.06 4
RSCH <tablename hidden> 0.06 7
RSCH <tablename hidden> 10 0

Large tables are not grouped into refresh groups. Each large table is a part of a refresh group that
bears its name. So each refresh group contains only one table with the same name as its own. The
tables and their statistics have been given below. The sizes and row counts as of 1/17/02. Please
note that the job numbers can be different if a full refresh has been made. So please update the
numbers in this doc.

Table/Group Name Job# Size(MB) Row Count
<tablename hidden> 11 59.00 997,717
<tablename hidden> 12 28.00 997,717
<tablename hidden> 15 50.00 0
<tablename hidden> 22 112.00 2,363,903
<tablename hidden> 16 50.00 0
<tablename hidden> 13 80.00 997,718
<tablename hidden> 21 144.00 1,719,138
<tablename hidden> 40 368.00 10,184,177
<tablename hidden> 17 105.00 2,086
<tablename hidden> 38 664.00 20,959,246
<tablename hidden> 52 12,097.97 20,959,246
<tablename hidden> 50 6,338.00 49,643,583
<tablename hidden> 43 1,793.00 19,903,632
<tablename hidden> 44 3,329.00 38,106,982
<tablename hidden> 42 1,408.00 20,959,311
<tablename hidden> 47 4,929.00 56,928,877
<tablename hidden> 19 10.00 26,119
<tablename hidden> 20 136.00 1,462,748
<tablename hidden> 18 8.00 3,430
<tablename hidden> 49 8,897.97 49,643,799

© Proligence, Inc. www.proligence.com

OurCustomer Database Replication Page 5 of 12

Technical Notes

To Turn Replication ON or OFF at the Master Site for a Table
Login to prodsvr1 in as the schema owner (MSCH or RSCH) or a dba account like sys and issue
the statement to turn off replication.
execute dbms_snapshot.begin_table_reorganization ?
(‘<owner>’,’<tablename>’)
This destroys the replication triggers on that table and will stop writing to the snapshot log of that
table. To turn it on, use the procedure, dbms_snapshot.end_table_reorganization with
the same parameters. No action is needed at the client site.

To turn replication on for all the tables in the
SMALL_TABLES group, use the script
start_small_tab_repl.sql in repl directory.
To stop replication, use the script
stop_small_tab_repl.sql. The scripts for the
MED_TABLES group are
start_med_tab_repl.sql and
stop_med_tab_repl.sql, respectively.

The Location of the Snapshot Logs
The snapshot log of a table is a combination of two
tables named, MLOG$_<tablename> and
RUPD$_<tablename> owned by the same owner which owns the table. In order to know how
many records are in the log to be applied, you can issue a select count(*) from these tables.

Changing the Refresh Interval
To change the interval, login to oracle on repsvr3 as snapadmin/snapadmin and issue the
statement
execute dbms_refresh.change
(‘<refresh_group_name>’,interval=>’sysdate+<minutes>/(24*60)’
where <refresh_group_name> is the name of the refresh group in uppercase and <minutes>
is the refresh interval in minutes.

Stopping Replication Temporarily at Snapshot Site
You may want to stop replication temporarily in order to do some administrative tasks on a table at
the snapshot site. For instance you want to run an alter table validate structure, or move the table
to a different tablespace, etc. To do that, on repsvr3, login to oracle as snapadmin and issue
select job from dba_refresh where rname = ‘<tablename>’ where <tablename>
is in uppercase.
execute dbms_job.broken(<jobno>,TRUE) where <jobno> is as obtained in the previous
step.
Commit; This is important, don’t forget to issue a commit.
After you are done, restart the replication by issuing
execute dbms_job.run(<jobno>)

Caution: When replication is turned off
via the procedure described above, the
changes to the master table(s) are not
recorded to the snapshot log(s). So
when replication is turned on again, the
changes that occurred between the
times it was turned off and on later will
not be transmitted to the snapshot site,
as they will not be present in the
snapshot log(s). Therefore, when you
turn off replication, always do a full
refresh after turning it on.

© Proligence, Inc. www.proligence.com

OurCustomer Database Replication Page 6 of 12

Replication Problems and Resolutions

Making A Snapshot Full Refresh

Small and Medium Tables
The full snapshot refresh can be a simple task or a complicated one depending upon the size of
the snapshot. We have tables (and their snapshots) in three different sizes – small, medium and
big as described in the main replication setup chapter. For the small and medium ones, the
procedure is fairly simple. Login to repsvr3 as MSCH or RSCH as appropriate and execute from
sqlplus (make sure the replication is turned on for that table before executing the following)

execute dms_snapshot.REFRESH(‘<tablename>’,’C’)

to refresh a single snapshot. To refresh multiple ones, use a comma separated list in the
placeholder <tablename>. To refresh all the snapshots of the group MG_SMALL_TABLES, use
the script refresh_small_tabs.sql in repl directory of cospprd3. The same for group
MED_TABLES is refresh_med_tabs.sql. To turn replication on for the small tables, execute
on prodsvr1, as user sys, execute the script start_small_tab_repl in repl directory. The
script for medium tables is start_med_tab_repl.

Large Tables
The large tables cannot be refreshed by the above method. Please note that the above method
can be used for large tables if all roll back segments are very large (approximately 6 GB in size for
the largest tables) and large temporary tablespace are available on prodsvr1 and repsvr3. Since
this process is infeasible, an alternative approach has been designed. Find a quiet time to do this
when less data updates may be happening.

In summary the steps are

1. Halt the refresh job.
2. Drop the snapshot and all associated objects at replication database.
3. Halt the replication activity on the master table.
4. Clean the snapshot log on the master table.
5. Start the replication activity on the master table.
6. Built an empty table at replication database same structure as the snapshot.
7. Export the master table and import into replication database.
8. Store the contents of the snapshot log at a separate place.
9. Build the snapshot and refresh groups at replication site.
10. Insert the saved rows of the snapshot log into it.
11. Run the job to sync up the refresh.

Here are the steps in more detail. The icons ? and ? indicate where the activity is to be done -
prodsvr1 and repsvr3, respectively

On prodsvr1 (Source)

1. ? Logon to oracle using sqlplus as MSCH and issue

© Proligence, Inc. www.proligence.com

OurCustomer Database Replication Page 7 of 12

execute dbms_snapshot.begin_table_reorganization (‘MSCH’,
’<tablename>’).

This will stop the replication triggers to write to the snapshot logs.

2. ? Issue execute dbms_snapshot.purge_log
(‘MSCH.<tablename>’,999,’DELETE’).

This will delete all the records from the snapshot log of that table.

3. ? Issue truncate table MSCH.mlog$_<tablename>.

This will truncate the snapshot log table to reset the high watermark that might have been
reached when the snapshot log has grown much bigger than needed.

On repsvr3 (Destination)

4. ? Logon to oracle using sqlplus as snapadmin/snapadmin.

5. ? Find out the job number of the job that fires the refresh for that table. Issue
select job from dba_refresh where rname = ‘<tablename>’;

6. ? Stop that job by issuing
execute dbms_job.broken(<jobno>,TRUE)

where <jobno> is the job number as obtained in the previous step.

7. ? Then issue Commit;

It is very important to issue commit here.

8. ? See if the job is already running. Issue
select sid from dba_jobs_running where job = <jobno>;

9. ? If you see a job running, then you need to kill it. Issue
select serial#, status from v$session where sid = <sid>;

where <sid> is the value obtained in the previous step.

10. ? Kill the session by issuing.
alter system kill session ‘<sid>, <serial#>’;

11. ? Repeat all the previous steps to make sure that the job is not running. If the status from
v$session shows KILLED, wait till it completely disappears from v$session.

12. ? Know which tablespace the table/snapshot is housed in. Issue
select tablespace_name from dba_segments where segment_name =
‘<tablename>’;

13. ? Connect to oracle as snapadmin/snapadmin

14. ? Drop the refresh group by issuing
execute dbms_refresh.destroy(‘<tablename>’)

15. ? Drop the snapshot group by issuing
execute dbms_repcat.drop_snapshot_repgroup (‘<tablename>, true)

© Proligence, Inc. www.proligence.com

OurCustomer Database Replication Page 8 of 12

16. ? Finally drop the snapshot. It might have been dropped in the last stage, but issue this just to
be sure. If it was dropped earlier, then the command will result in error. Ignore it. Connect as
MSCH and issue.
drop snapshot <tablename>;

17. ? Next drop the underlying table. Warning : Make sure you are on repsvr3 box.
drop table <tablename>;

18. ? Now it’s time to rebuild that snapshot. First we need to rebuild the table. Connecting as
MSCH, issue the statement
create table <tablename>
tablespace <tablespace_name>
nologging
as
select *
from MSCH.<tablename>@DBPROD
where 1 = 2;
where <tablespace_name> is the name of the tablespace where it would be placed. You
would already know that from earlie r steps.

Data Transfer Part (Both prodsvr1 and repsvr3)

19. ? Logon to the unix box prodsvr1 as oracle.

20. ? Issue the following to create a unix pipe to transfer the data across. Before that remove it if
it’s present.
rm /tmp/exp_pipe
mknod /tmp/exp_pipe p (note the p at the end)

21. ? Logon to oracle on prodsvr1 as MSCH and turn on replication for that table. Issue
execute dbms_snapshot.end_table_reorganization
(‘MSCH’,’<tablename>’).

This will start the replication triggers to write to the snapshot logs.

22. ? Logon to unix box repsvr3 as oracle.

23. ? Issue to receive contents from the export pipe.
rm /tmp/imp_pipe
mknod /tmp/imp_pipe p (note the p at the end)

24. ? On prodsvr1, issue cd repl.

25. ? There is a file exp_<tablename>.par which will be used for export parameter definition.
To make sure that all the parameters are right, open it and verify. Important parameter is the
first line file=/tmp/exp_pipe. That should be present.

26. ? Run the export by issuing
exp MSCH/iclaim parfile=exp_<tablename>.par &

Note the ampersand at the end. This will run it in the background.

27. ? Immediately after that issue
cat /tmp/exp_pipe | rsh repsvr3 dd of=/tmp/imp_pipe &

© Proligence, Inc. www.proligence.com

OurCustomer Database Replication Page 9 of 12

This will push the contents of the pipe to the destination box.

28. ? After 1 minute, not immediately, go to repsvr3 box and issue
cd repl
imp MSCH/iclaim parfile=imp_<tablename>.par &

29. ? Make sure the import is going smoothly. Logon to oracle as MSCH and issue
select count(*) from <tablename>;

You should see some non-zero number there.

30. ? I have also put together a utility script how much of the import is done. It’s called
insrate.sql. Edit the script to change the table name to <tablename> and the number of
rows. You can run the script periodically to see how much is done, the rate of inserts, how
much is left and the approximate finish time.

31. Depending upon the size of the table, the export import for a table may take up to three hours.
The next step is primary key index building. All the following steps are on repsvr3, unless
otherwise noted.

32. ? Logon to oracle as user MSCH.

33. ? Create the index to enforce the primary key constraint. In the directory repl, you will find
the primary key index creation scripts named in the format pk_<tablename>.sql. Login as
MSCH and run the appropriate index creation script.

34. ? The next step is creation of snapshot from the table just created. First we will have to store
the contents of the snapshot log created so far because the registration of the snapshot at the
replication site will destroy it. After the snapshot is created, we need to restore the contents
back to the snapshot log. I have written a batch sql script to achieve all these. Logging in to
oracle on repsvr3 as MSCH, run the following script
@cr_repl_prebuilt <tablename>

where <tablename> is in uppercase. This will create all necessary replication objects and will
enable them for replication. It produces a spool file cr_repl_prebuilt.log. Check it for
errors.

35. ? Get the job number the snapshot group is assigned to. Issue the following.
select job from dba_refresh where rname = ‘<tablename>’;

36. ? Login to oracle as snapadmin/snapadmin and issue
execute dbms_job.run(<jobno>)

37. ? On prodsvr1 logon to oracle as MSCH and issue
select count(*) from mlog$_<tablename>;

This should show a very small number. Wait for five minutes and reissue the query. The
number should change.

38. ? Finally, create the indexes on repsvr3. There are no separate scripts for the indexes. So run
the script, cr_MSCH_indexes.sql located in the repl directory. This will result in some
failures, as the indexes will exist before. Just ignore them.

Now replication is enabled on that table.

© Proligence, Inc. www.proligence.com

OurCustomer Database Replication Page 10 of 12

Altering Master Tables Used in Replication

Problem
When the master tables are altered in some way that affects the snapshot definition, for instance
as in case of adding a column to the master table demands that the same column be added to the
snapshot for the replication, Oracle replication poses a problem – it does not allow changing the
snapshot’s query. The snapshot must be dropped and recreated with the new column in the query.
However, large snapshots take an enormous amount of time to be recreated and require
considerable rollback and temporary space, making the process infeasible. Here is an alternative
approach, undocumented in Oracle, to make it work.

Solution Description
Snapshots can be made in two ways

??Directly from the master table, where the snapshot is created as select * from the master table

suffixed by the db link.
??A table can be first created in the replication environment, and the snapshot can be created on

the table with the option “prebuilt table”. In case of large tables, a table can be pre -built using
exp/imp, create table as select or the copy command in sqlplus.

When a snapshot is dropped, the storage is dropped as well; however, when the snapshot created
using the pre-built table is dropped, the pre-built table is not dropped, just the snapshot is.

Since the snapshot used the pre -built table during creation, it must be using the same table for all
the DML activity, since there is no need to create another segment for the snapshot. So when the
snapshot is dropped, the table is left as the same state at the time the snapshot was dropped. At
that time the table can be applied the same DDLs the master table was subjected to and then the
snapshot can be recreated on the table using the pre-built option. Assuming no database change
happens between the snapshot is dropped and recreated, oracle engine at the replication site is
made to assume that the table was indeed as a same state as the last refresh and thus fast refresh
can continue as usual.

This solution has been described in detail here.

Step by Step Actions

Step Master Site (prodsvr1) Replication Site (repsvr3)

1 Identify the job that refreshes the snapshot.
Logging in as snapadmin/snapadmin in sqlplus,
issue
Select job from user_refresh where
rname = ‘<tablename>’;

© Proligence, Inc. www.proligence.com

OurCustomer Database Replication Page 11 of 12

Step Master Site (prodsvr1) Replication Site (repsvr3)

2 Shutdown that job by issuing
execute dbms_job.broken (<jobno>,
TRUE)

This will hold the job. Important : Issue a
commit after the execute command.

3 Drop the snapshot. Logging in as MSCH, issue
the command
Drop snapshot <tablename>;

4 Stop replication activity on the group.
Logging in as MSCH issue:
execute dbms_repcat.
suspend_master_activity
(‘<tablename>’)

5 Logging in as the user MSCH, issue
execute
dbms_repcat.alter_master_repo
bject (sname => 'MSCH', oname
=> '<tablename>', type =>
'TABLE', ddl_text => 'alter
table MSCH.<tablename> ...’);

The alter script is put here. Do not use
the end ; as in case of a sql script. This
command alters the master table, so
there is no need to issue another alter
from sqlplus. Make sure you prefixed the
tablename with MSCH as the schema
owner in the ddl_text argument.

6 Regenerate the replication support for
the table. Logging in as user
repadmin/repadmin, issue
execute
dbms_repcat.generate_replicat
ion_support (sname=>’MSCH’,
oname=>’<tablename>’,
type=>’TABLE’,
min_communication=>TRUE)

7 Start the replication activity. As
repadmin user, issue
execute dbms_repcat.
resume_master_activity
(‘<tablename>’)

8 Alter the replication table. Logging in as MSCH
user, issue the alter table statement for that

© Proligence, Inc. www.proligence.com

OurCustomer Database Replication Page 12 of 12

Step Master Site (prodsvr1) Replication Site (repsvr3)
user, issue the alter table statement for that
table name.

9 Create the snapshot. Run the script cr_ref.sql.
From sqlplus prompt type
@cr_repl_prebuilt <tablename>

where <tablename> is table name in
uppercase. It will actually error out later stating
that the snapshot existed earlier, but ignore it.
Describe the table to make sure the new
columns are in there.

10 Check the snapshot. As snapadmin, issue in
sqlplus
execute
dbms_refresh.refresh(‘<tablename>’)

11 Check the job. As snapadmin in sqlplus issue
execute dbms_job.run(<jobno>)

At this point the snapshot at replication site behaves like a fast refreshable snapshot. The most
important thing to make sure that no data changes occurs between the first and last steps.

